Malonate Inhibits Virulence Gene Expression in Vibrio cholerae

نویسندگان

  • Yusuke Minato
  • Sara R. Fassio
  • Claudia C. Häse
چکیده

We previously found that inhibition of the TCA cycle, either through mutations or chemical inhibition, increased toxT transcription in Vibrio cholerae. In this study, we found that the addition of malonate, an inhibitor of succinate dehydrogenase (SDH), decreased toxT transcription in V. cholerae, an observation inconsistent with the previous pattern observed. Unlike another SDH inhibitor, 2-thenoyltrifluoroacetone (TTFA), which increased toxT transcription and slightly inhibited V. cholerae growth, malonate inhibited toxT transcription in both the wild-type strain and TCA cycle mutants, suggesting malonate-mediated inhibition of virulence gene expression is independent to TCA cycle activity. Addition of malonate also inhibited ctxB and tcpA expressions but did not affect aphA, aphB, tcpP and toxR expressions. Malonate inhibited cholera toxin (CT) production in both V. cholerae classical biotype strains O395N1 and CA401, and El Tor biotype strain, N16961. Consistent with previous reports, we confirmed that these strains of V. cholerae did not utilize malonate as a primary carbon source. However, we found that the addition of malonate to the growth medium stimulated V. cholerae growth. All together, these results suggest that metabolizing malonate as a nutrient source negatively affects virulence gene expression in V. cholerae.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bicarbonate Induces Vibrio cholerae virulence gene expression by enhancing ToxT activity.

Vibrio cholerae is a gram-negative bacterium that is the causative agent of cholera, a severe diarrheal illness. The two biotypes of V. cholerae O1 capable of causing cholera, classical and El Tor, require different in vitro growth conditions for induction of virulence gene expression. Growth under the inducing conditions or infection of a host initiates a complex regulatory cascade that result...

متن کامل

From motility to virulence: Sensing and responding to environmental signals in Vibrio cholerae.

Sensing its changing environment is key for Vibrio cholerae when making the transition from an aquatic lifestyle to one more suited to a human host. An inverse correlation between motility and virulence gene expression has been reported, with the NADH : ubiquinone oxidoreductase system which powers motility by generating a sodium-motive force, playing a pivotal role. Recent studies have demonst...

متن کامل

Role of the histone-like nucleoid structuring protein in colonization, motility, and bile-dependent repression of virulence gene expression in Vibrio cholerae.

Bile-mediated repression of virulence gene expression is relieved in a Vibrio cholerae hns mutant. The mutant also exhibited reduced motility due to lower flrA expression, higher in vivo production of the virulence factors, and lower colonization efficiency. The colonization defect of the mutant was due to low FlrA production.

متن کامل

PCR-MEDIATED CLONING A ND EXPRESSION OF THE GENE FOR THE B-SUBUNIT OF VIBRIO CHOLERAE TOXIN ISOLATED RECENTLY IN IRAN

Knowing the nucleotide sequence of the cholera toxin operon, we designed oligonucleotide primers for its-PCR amplification from local clinical isolates of V. cholerae. The resulting amplification product was cloned in a common pUC18 vector. Subsequently, a part of this operon encoding the cholera toxin Bsubunit (CTB) was reamplified and cloned between the BamH1 and EcoR1 sites of the same ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013